Mre11 inhibition by oncolytic adenovirus associates with autophagy and underlies synergy with ionizing radiation.
نویسندگان
چکیده
New treatment approaches are needed for hormone refractory prostate cancer. Oncolytic adenoviruses are promising anti-cancer agents, and their efficacy can be improved by combining with conventional therapies such as ionizing radiation. The aim of this study was to determine the timing of oncolytic adenovirus treatment with regard to radiation and study the mechanisms of synergy in combination treatment. Prostate cancer cells were infected with oncolytic adenoviruses, irradiated and synergy mechanisms were assessed. In vivo models of combination treatment were tested. Radiation and oncolytic viruses were synergistic when viral infection was scheduled 24 hr after irradiation. Combination of oncolytic adenovirus with radiotherapy significantly increased antitumor efficacy in vivo compared to either agent alone. Microarray analysis showed dysregulated pathways including cell cycle, mTOR and antigen processing pathways. Functional analysis showed that adenoviral infection was accompanied with degradation of proteins involved in DNA break repair. Mre11 was degraded for subsequent inactivation of Chk2-Thr68 in combination treated cells, while gammaH2AX-Ser139 was elevated implicating the persistence of DNA double strand breaks. Increased autophagocytosis was seen in combination treated cells. Combination treatment did not increase apoptosis or virus replication. The results provide evidence of the antitumor efficacy of combining oncolytic adenoviruses with irradiation as a therapeutic strategy for the treatment of prostate cancer. Further, these findings propose a molecular mechanism that may be important in radiation induced cell death, autophagy and viral cytopathic effect.
منابع مشابه
Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery.
The inability to repair DNA double-strand breaks (DSB) leads to radiosensitization, such that ionizing radiation combined with molecular inhibition of cellular DSB processing may greatly affect treatment of human cancer. As a variety of viral products interact with the DNA repair machinery, oncolytic virotherapy may improve the therapeutic window of conventional radiotherapy. Here, we describe ...
متن کاملAtaxia-telangiectasia mutated and the Mre11-Rad50-NBS1 complex: promising targets for radiosensitization.
Radiotherapy plays a central part in cancer treatment, and use of radiosensitizing agents can greatly enhance this modality. Although studies have shown that several chemotherapeutic agents have the potential to increase the radiosensitivity of tumor cells, investigators have also studied a number of molecularly targeted agents as radiosensitizers in clinical trials based on reasonably promisin...
متن کاملCombining Oncolytic Adenovirus with Radiation—A Paradigm for the Future of Radiosensitization
Oncolytic viruses and radiotherapy represent two diverse areas of cancer therapy, utilizing quite different treatment modalities and with non-overlapping cytotoxicity profiles. It is, therefore, an intriguing possibility to consider that oncolytic ("cancer-killing") viruses may act as cancer-selective radiosensitizers, enhancing the therapeutic consequences of radiation treatment on tumors whil...
متن کاملImpact of Autophagy in Oncolytic Adenoviral Therapy for Cancer
Oncolytic virotherapy has recently emerged as a promising strategy for inducing tumor-specific cell death. Adenoviruses are widely and frequently used in oncolytic virotherapy. The mechanism of oncolytic adenovirus-mediated tumor suppression involves virus-induced activation of the autophagic machinery in tumor cells. Autophagy is a cytoprotective process that produces energy via lysosomal degr...
متن کاملThe Effect of Autophagy Induction in Oncolytic Reovirus Replication in Mesenchymal Stem Cells
Background and Aims: Oncolytic reoviruses can infect and kill malignant cells while sparing their normal counterparts. Reoviral infection can induce or activate autophagy, even though metformin can induce autophagy. Identifying and regulating the cellular pathways important for reovirus replication and oncolysis can improve targeted-biological therapies for cancer. Here, the autophagic process ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of cancer
دوره 125 10 شماره
صفحات -
تاریخ انتشار 2009